Midterm- Computer Science 2 (2021-22)

Time: 2 hours.

Attempt all questions, giving proper explanations. You may quote any result proved in class without proof.

1. How is the number -100.625 stored as a floating point number in the computer ? Give the sign, mantissa and exponent. [4 marks]
2. You have to give proper explanations for the questions below, and not just write down the values.
(a) Find the smallest possible floating point number. [2 marks]
(b) Find the value of Machine ϵ, that is the smallest number ϵ such that $1+\epsilon>1$ in the floating point number system. [2 marks]
3. Consider the solution to $x=\log (3 x+1)$ in [1,3]. Consider the iterations $x_{k+1}=\log \left(3 x_{k}+1\right)$. Starting from $x_{0}=\frac{3}{2}$ how many iterations are necessary before we are within 10^{-6} of the solution? [4 marks]
4. Consider the matrix \mathbf{A} and the vector \mathbf{b} given below.

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 2 \\
1 & 2 & 3 \\
1 & 3 & 4
\end{array}\right], \quad \mathbf{b}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
3
\end{array}\right)
$$

(a) Find the QR decomposition of A. [4 marks]
(b) Find the least squares solution of the system $\mathbf{A x}=\mathbf{b}$. [2 marks]
5. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a quadratic polynomial. Suppose there is an $\alpha \in \mathbf{R}$ such that

- $f(\alpha)=0$.
- $f^{\prime}(\alpha) \neq 0$ and $f^{\prime \prime}(\alpha) \neq 0$.

Consider the sequence

$$
x_{k}=x_{k-1}-\frac{f\left(x_{k-1}\right) \cdot\left(x_{k-1}-x_{k-2}\right)}{f\left(x_{k-1}\right)-f\left(x_{k-2}\right)}, \quad k \geq 1
$$

with starting values x_{0}, x_{1}.
(a) Show that there is an $\eta>0$ such that if $x_{0}, x_{1} \in(\alpha-\eta, \alpha+\eta)$ then x_{k} is a well defined sequence of real numbers. [2 marks]
(b) Let $\epsilon_{k}=x_{k}-\alpha$. Show that there are constants $M_{2} \geq M_{1}>0$ such that

$$
M_{1}\left|\epsilon_{k}\right|\left|\epsilon_{k-1}\right| \leq\left|\epsilon_{k+1}\right| \leq M_{2}\left|\epsilon_{k}\right|\left|\epsilon_{k-1}\right|
$$

if x_{0}, x_{1} are chosen sufficiently close to α. [3 marks]
(c) For a fixed x_{0}, x_{1} sufficiently close to α, suppose there are constants $0<C_{1} \leq C_{2}$ and $p>0$ such that

$$
C_{1}\left|\epsilon_{k}\right|^{p} \leq\left|\epsilon_{k+1}\right| \leq C_{2}\left|\epsilon_{k}\right|^{p} \quad \text { for all } k \geq 1
$$

Show that $p=\frac{1+\sqrt{5}}{2}$. [3 marks]

