Midterm- Computer Science 2 (2021-22) Time: 2 hours.

Attempt all questions, giving proper explanations. You may quote any result proved in class without proof.

- 1. How is the number -100.625 stored as a floating point number in the computer ? Give the sign, mantissa and exponent. [4 marks]
- 2. You have to give proper explanations for the questions below, and not just write down the values.
 - (a) Find the smallest possible floating point number. [2 marks]
 - (b) Find the value of Machine ϵ , that is the smallest number ϵ such that $1 + \epsilon > 1$ in the floating point number system. [2 marks]
- 3. Consider the solution to $x = \log(3x+1)$ in [1,3]. Consider the iterations $x_{k+1} = \log(3x_k+1)$. Starting from $x_0 = \frac{3}{2}$ how many iterations are necessary before we are within 10^{-6} of the solution? [4 marks]
- 4. Consider the matrix **A** and the vector **b** given below.

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 3 & 4 \end{bmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 3 \end{pmatrix}$$

- (a) Find the QR decomposition of **A**. [4 marks]
- (b) Find the least squares solution of the system Ax = b. [2 marks]
- 5. Let $f : \mathbf{R} \to \mathbf{R}$ be a *quadratic* polynomial. Suppose there is an $\alpha \in \mathbf{R}$ such that
 - $f(\alpha) = 0.$
 - $f'(\alpha) \neq 0$ and $f''(\alpha) \neq 0$.

Consider the sequence

$$x_{k} = x_{k-1} - \frac{f(x_{k-1}) \cdot (x_{k-1} - x_{k-2})}{f(x_{k-1}) - f(x_{k-2})}, \qquad k \ge 1,$$

with starting values x_0, x_1 .

- (a) Show that there is an $\eta > 0$ such that if $x_0, x_1 \in (\alpha \eta, \alpha + \eta)$ then x_k is a well defined sequence of real numbers. [2 marks]
- (b) Let $\epsilon_k = x_k \alpha$. Show that there are constants $M_2 \ge M_1 > 0$ such that

$$M_1|\epsilon_k||\epsilon_{k-1}| \le |\epsilon_{k+1}| \le M_2|\epsilon_k||\epsilon_{k-1}|,$$

if x_0, x_1 are chosen sufficiently close to α . [3 marks]

(c) For a fixed x_0, x_1 sufficiently close to α , suppose there are constants $0 < C_1 \leq C_2$ and p > 0 such that

$$C_1 |\epsilon_k|^p \le |\epsilon_{k+1}| \le C_2 |\epsilon_k|^p$$
 for all $k \ge 1$.

Show that $p = \frac{1+\sqrt{5}}{2}$. [3 marks]